Guanine nucleotides mediate stimulatory and inhibitory effects on cerebral-cortical membrane phospholipase C activity.

نویسنده

  • I Litosch
چکیده

In cerebral-cortical membranes, hydrolysis-resistant guanine nucleotides exert a dual regulatory effect on phospholipase C activity. Nanomolar concentrations of guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) inhibited basal phospholipase C activity, with a maximum inhibition of 30% at 10 nM. Increasing the concentration of p[NH]ppG or GTP[S] to over 10 nM resulted in a reversal of the inhibitory effect and onset of stimulation of phospholipase C activity. These inhibitory effects were blocked by 100 microM-guanosine 5'-[beta-thio]diphosphate. GTP was relatively ineffective in producing either stimulation or inhibition of phospholipase C activity. Similarly, ATP, adenosine 5'-[beta gamma-imido]triphosphate and GDP were also ineffective. Expression of the dual effects of guanine nucleotides was affected by the Mg2+ concentration. At 0.3 mM-Mg2+, both the inhibitory and the stimulatory components of p[NH]ppG action were evident. At 2.5 mM-Mg2+, only p[NH]ppG stimulation was observed. Pertussis-toxin treatment blocked the p[NH]ppG-mediated inhibition of phospholipase C activity. These results demonstrate that non-hydrolysable guanine nucleotides exert both a stimulatory and an inhibitory effect on membrane phospholipase C activity. These effects may be mediated through distinct GTP-binding proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of cerebral-cortical membranes with exogenously added phosphatidylinositol 4,5-bisphosphate. Effects on measured phospholipase C activity.

Exogenously added phosphatidylinositol 4,5-bisphosphate (PtdInsP2) is rapidly associated with cerebral-cortical membranes. Substrate association with membranes was promoted by Mg2+, but inhibited by bivalent chelators. Once associated with the membrane, the PtdInsP2 was resistant to displacement by EDTA. The apparent phospholipase C activity was dependent on the degree of association of substra...

متن کامل

Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes.

The guanine nucleotides guanosine 5'[beta, gamma-imido]triphosphate (Gpp[NH]p), guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S), GMP, GDP and GTP stimulated the hydrolysis of inositol phospholipids by a phosphodiesterase in rat cerebral cortical membranes. Addition of 100 microM-Gpp[NH]p to prelabelled membranes caused a rapid accumulation of [3H )inositol phosphates (less than 30 s) for u...

متن کامل

G protein regulation of phospholipase C activity in a membrane-solubilized system occurs through a Mg2(+)- and time-dependent mechanism.

GTP-binding proteins have been implicated to function as key transducing elements in the mechanism underlying receptor activation of a membrane-associated phospholipase C activity. In the present study, the regulation of phospholipase C activity by GTP-binding proteins has been characterized in a detergent-solubilized system derived from bovine brain membranes. Guanosine-5'-(3-O-thio)triphospha...

متن کامل

Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells.

[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most e...

متن کامل

Adenosine-receptor-mediated stimulation of low-Km GTPase in guinea-pig cerebral cortex.

Inhibition of receptor-coupled adenylate cyclase by hormones is proposed to be associated with GTP hydrolysis. Since adenosine inhibits cerebral-cortical adenylate cyclase via A1 adenosine receptors, the present study attempts to verify this mechanism for A1-selective adenosine derivatives. In guinea-pig cortical membranes N6-(phenylisopropyl)adenosine (PIA) increased the Vmax. of the low-Km GT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 261 1  شماره 

صفحات  -

تاریخ انتشار 1989